Magma Announces Talus-Based RTL-to-GDSII Low-Power Reference Flow for UMC's 40-Nanometer Process


SAN JOSE, Calif., July 15, 2009 (GLOBE NEWSWIRE) -- Magma(r) Design Automation Inc. (Nasdaq:LAVA), a provider of chip design software, today announced the availability of an integrated low-power IC implementation reference flow for UMC's (NYSE:UMC) (TSE:2303) advanced 40-nanometer (nm) process.

This reference flow supports the UMC 40-nm process and the UMC 40-nm low-leakage library. Based on the Magma Talus(r) IC implementation system and fully compliant with the Unified Power Format (UPF), it allows designers to address low-power nanometer design considerations during implementation and within a single environment, maximizing quality of results (QoR) while reducing turnaround time. Similar low-power reference flows for 90- and 65-nm processes are already available from Magma.

"UMC and Magma's long-standing partnership has resulted in many productive design support solutions for our customers," said Stephen Fu, director of the IP Development and Design Support Division at UMC. "Our latest effort is an integrated low-power IC implementation reference flow that gives designers a means to address low-power issues during the implementation phase of 40-nm designs."

"Our goal in working with UMC was to give project teams a way to address low-power nanometer design considerations with an integrated low-power IC implementation reference flow," said Premal Buch, general manager of Magma's Design Implementation Business Unit. "The Talus platform's unique integration accomplishes that goal while reducing overall turnaround time."

The Magma-UMC Low-Power Reference Flow

The Magma-UMC RTL-to-GDSII low-power reference flow includes the required scripts and documentation for Magma users to move to UMC's advanced 40-nm low-power process technology and offers timing closure without iterations to enable quick silicon delivery.

A multiple-power domain is used to create different voltage domains with designated purposes, including reducing leakage current and reducing chip power consumption while meeting timing requirements. The reference flow provides MTCMOS power switch insertion and placement for implementing a switched domain. It performs automatic checking and insertion of level shifters and isolation cells into the right locations in a domain, insertion of retention flip-flops in the domain that can be powered down, and always-on buffering for retention of the control signal in the switched domain.

In addition, Magma's placement engines complete all the standard-cell placement in the design using features such as comprehensive congestion analysis and timing-driven placement. Magma's clock tree synthesis constructs a minimum-skew clock tree. With the GUI clock-tree browser, users can monitor the clock tree implementation during the flow and can select the correct clock tree structures for their design. After clock tree synthesis is completed, Magma's advanced routing engines complete the routing, including signal and power routing, based on UMC's 40-nm design rules.

Magma's integrated IC implementation solution and unified data structure as the basis for the reference flow ensures better quality results for timing, area, power, signal integrity and reliability while minimizing the design cycle.

Availability

The reference flow is available from Magma now at no cost to Magma customers.

About Magma

Magma's electronic design automation (EDA) software is used to create complex, high-performance integrated circuits (ICs) for cellular telephones, electronic games, WiFi, MP3 players, DVD/digital video, networking, automotive electronics and other electronic applications. Magma products for IC implementation, analog/mixed-signal design, analysis, physical verification, circuit simulation and characterization are recognized as embodying the best in semiconductor technology, providing the world's top chip companies the "Fastest Path to Silicon."(tm) Magma maintains headquarters in San Jose, Calif., and offices throughout North America, Europe, Japan, Asia and India. Magma's stock trades on Nasdaq under the ticker symbol LAVA. Visit Magma Design Automation on the Web at www.magma-da.com.

Magma and Talus are registered trademarks and "Fastest Path to Silicon" is a trademark of Magma Design Automation Inc. All other product and company names are trademarks and registered trademarks of their respective companies.

Forward-Looking Statements:

Except for the historical information contained herein, the matters set forth in this press release, including statements that the Talus-based reference flow ensures better quality results for timing, area, power, signal integrity and reliability while minimizing the design cycle are forward-looking statements within the meaning of the "safe harbor" provisions of the Private Securities Litigation Reform Act of 1995.These forward-looking statements are subject to risks and uncertainties that could cause actual results to differ materially including, but not limited to Magma's and UMC's abilities to keep pace with rapidly changing technology; and the companies' products' abilities to produce desired results; and UMC's and Magma's decisions to continue working together. Further discussion of these and other potential risk factors may be found in Magma's public filings with the Securities and Exchange Commission (www.sec.gov). Magma undertakes no additional obligation to update these forward-looking statements.



            

Contact Data