China Intelligent Vehicle E/E Architecture Industry Report 2022: Complete Development Tool Chain, Advanced Architecture Standards, and V-model-Based EEA Development Process


Dublin, Oct. 19, 2022 (GLOBE NEWSWIRE) -- The "China Intelligent Vehicle E/E Architecture Research Report, 2022" report has been added to ResearchAndMarkets.com's offering.

Key technologies of next-generation electronic and electrical architectures (EEA)

The definition of next-generation E/E architectures involves: high computing power HPC for vehicle-cloud architecture integration; high-bandwidth, high-speed backbone network for inter-domain cooperative computing; service-oriented architecture (SOA) that enables software and hardware decoupling, generalized software/hardware architecture and standardized interfaces; complete development tool chain that uses the V-model development process; support for L4 advanced driving assistance; intelligent low-voltage power supply architecture.

For the development of next-generation E/E architectures, we have summarized 14 key technologies. The following lists and analyzes the progress in some key technologies:

Key technologies of EEA: complete development tool chain, advanced architecture standards, and V-model-based EEA development process.

Currently there is no global automotive EEA standard. ISO 26262 Road Vehicles-Functional Safety, ISO/SAE 21434 Road Vehicles-Cybersecurity Engineering, and GB/T 34590 Road Vehicles-Functional Safety among others provide a reference for design and optimization of automotive EEAs.

In China, in April 2021 Automotive Electronic and Electrical Architecture Working Group was reviewed and established at the second council of the third session of China Industry Technology Innovation Strategic Alliance for Electric Vehicle. At present, experts from over 35 companies including OEMs, architecture solution providers, software firms, communication companies, and testing tools and services providers have participated.

Comain centralized architecture

Such architectures as Volkswagen E3, Great Wall Motor's GEEP3.0 Architecture, BYD's E Platform 3.0, Geely's Sustainable Experience Architecture (SEA) and Xpeng's EE 2.0 are all typical domain centralized architectures.

In Volkswagen E3's case, this architecture is composed of three domain controllers: vehicle control (ICAS1), intelligent driving (ICAS2), and intelligent cockpit (ICAS3). ICAS1 and ICAS3 have been developed and mounted on models like ID.3 and ID.4, while ICAS2 has not been developed yet. The driving assistance functions are currently called via distributed ECUs and ICAS1.

The MEB architecture passes through two stages: E3 1.1 and E3 1.2. The platform offers continuously evolving and optimized functions. Starting from 2025, all the three automakers Volkswagen, Audi and Porsche will use the E3 2.0 SSP (Scalable Systems Platform), a central computing platform which may be first available to the Audi Artemis project.

Quasi-central computing architecture, to enable multi-domain integration (e.g., cockpit and driving integration).

Z-ONE's E/E architecture Galaxy Full Stack 3.0 uses two master-slave high-performance computing units, namely, HPC1 and HPC2, to enable the capabilities of intelligent driving, intelligent cockpit, intelligent computing, and intelligent driving backup, and plus 4 zone controllers, realizes related functions in each zone to fully support L4+ intelligent driving technologies. The architecture will integrate different network communication technologies like CAN FD, Gigabit Ethernet, and 5G, ensuring that a vehicle has powerful enough brain pathways.

SAIC Z-ONE Full Stack 3.0, A Quasi-central EEA Enabling Cockpit and Driving Integration

Central computing architecture, with computing power centralized in a supercomputing platform, and the pace of mass production possibly faster than expected.

The framework of the central computing architecture consists of a central computing unit, zone controllers and high-speed Ethernet. The cooperation of the three builds an adaptive and self-learning system to realize intelligent connectivity and high-level autonomous driving.

NIO's central computing unit boasts computing power of more than 1000TOPS, and over 1GHz master frequency. It may use NVIDIA Adam supercomputing platform;

NIO's zone controllers highlight the following functions: distributed edge computing, vehicle control arbitration center, information communication network for SOA service communication, zonal centralized data center, vehicle power distribution hub, and sensor and actuator data exchange. Considering the limited computing resources in zone controllers, NIO uses AMP multi-core architecture in zone controllers for integration and isolation of cross-domain functions, and the RTOS in the AMP mode runs one operating system case on each CPU.

Through the lens of development trends, automotive EEA will eventually evolve to central computing architectures with functional logics centralized in one central controller. OEMs become ever more radical in EEA planning. For emerging carmakers and conventional OEMs, the year of 2023 will be a key time node to mass-produce the next-generation "central computing + zone controller" architectures.

Moreover, as computing platforms with ultra-high computing power are production-ready and software technology iterates rapidly, central computing architectures may even be spawned in the five years to come at the earliest.

Key Topics Covered:

1 Key Technologies of Automotive E/E Architecture Updates
1.1 Evolution of Automotive E/E Architecture
1.2 Architecture Standardization
1.3 Complete Development Process
1.4 Supercomputing Chip and Vehicle-Cloud Integration Computing
1.5 AP AUTOSAR & SOA Software
1.6 Communication Architecture (SOME/IP&DDS)
1.7 Communication Architecture (Wireless Short-range Communication Technology)
1.8 Communication Architecture
1.9 Communication Architecture (High-speed Gateway)
1.10 Automotive OS, Microkernel and Hypervisor
1.11 Security Technology
1.12 Tool Chain
1.13 Zonal Controller
1.14 Power Architecture (Redundancy Strategy)
1.15 Power Architecture (Low-voltage Intelligent Distribution Network)

2 E/E Architecture Revolution for OEMs and Tier1s
2.1 Business Model Revolution between OEMs and Tier1 Suppliers under New E/E Architecture
2.2 Reference Architecture of E/E Architecture Evolution
2.3 E/E Architecture Comparison of OEMs
2.3.7 OEMs Will Focus on Domain Hybrid before 2025

3 E/E Architecture of Emerging Automakers
3.1 Tesla
3.2 Xpeng
3.3 NIO
3.4 Li Auto
3.5 Human Horizons
3.6 ENOVATE
3.7 JIDU
3.8 Neta

4 E/E Architecture of Independent Brands
4.1 Geely
4.2 Great Wall Motor
4.3 GAC
4.4 BYD
4.5 SAIC
4.6 Changan
4.7 FAW Hongqi
4.8 Higer

5 E/E Architecture of Foreign Brands
5.1 Volkswagen
5.2 BMW
5.3 Mercedes-Benz
5.4 Toyota
5.5 General Motors
5.6 Volvo
5.7 Nissan
5.8 Stellantis

For more information about this report visit https://www.researchandmarkets.com/r/qoh7mg

 

Coordonnées